AgNPs | Enterococcus faecalis, S. aureus | Vancomycin-resistant | Combination with vancomycin. Bacterial cell death. | Saeb et al., 2014; Esmaeillou et al., 2017 |
| Enterococcus |
| On-going investigations. | Percival et al., 2007 |
| S. aureus | Methicillin-resistant | Combination with antibiotics. | Brown et al., 2012; Saeb et al., 2014; Esmaeillou et al., 2017 |
|
|
| Physical adhesion to the bacterial cell. | Su et al., 2011 |
|
|
| On-going investigations. | Percival et al., 2007 |
| E. coli, P. aeruginosa | Ampicillin- resistant | Combination
with ampicillin leads to entry into the bacterial cell. Inhibition of
cell wall synthesis, protein synthesis and nucleic acid synthesis. | Lara et al., 2010; Brown et al., 2012 |
| S. aureus, E. coli, P. aeruginosa, K. pneumoniae, E. faecalis, Salmonella Typhimurium, Bacillus cereus | Erythromycin-resistant | Cell surface damage and loss of the chain integrity. | Otari et al., 2013 |
| S. pneumoniae | Teicoplanin-resistant | ROS generation, cellular uptake of silver ions, cascade of intracellular reaction. | Thapa et al., 2017 |
| E. coli, S. aureus | Ampicillin- resistant |
|
|
| E. coli, S. aureus | Tetracycline-resistant | Combination with tetracycline. | Djafari et al., 2016 |
| P. aeruginosa | Ofloxacin-resistant | Evade multidrug efflux pumps. | Ding et al., 2018 |
| P. aeruginosa, MRSA, VRE, Serratia marcescens | Biofilm formation | Ongoing investigations. | Percival et al., 2007 |
| Enterobacter cloacae, S. mutans |
| ROS production and membrane disruption. | Kulshrestha et al., 2017 |
| S. epidermidis, S. aureus |
| Penetration in the bacterial biofilm using an external magnetic field. | Mahmoudi and Serpooshan, 2012 |
| E. coli | MDR | ROS generation. | Zhang et al., 2013; Siddiqi et al., 2018 |
| E. coli, P. aeruginosa |
|
| Ramalingam et al., 2016 |
| S. aureus, Enterococcus spp., P. aeruginosa, A. baumannii, Enterobacteriaceae |
| Interaction with components of the cells where chemical and physical properties are modified. | Cavassin et al., 2015 |
| E. coli |
|
| Lok et al., 2007 |
| S. aureus, E. coli, P. aeruginosa, K. pneumoniae, B. subtilis |
| Penetration in the bacterial cell wall. | Acharya et al., 2018 |
| P. aeruginosa |
| Combined therapy, using blue light. | El Din et al., 2016 |
| E. coli, Pseudomonas fluorescens, Pseudomonas putida, P. aeruginosa, B. subtilis, S. aureus |
| Disruption of the bacterial cell wall. | Bondarenko et al., 2013 |
| A. baumannii |
| Attach to the cell wall leading to structural changes in the permeability of the cell membrane. | Chang et al., 2017 |
| P. aeruginosa |
|
| Singh K. et al., 2014; Salomoni et al., 2017 |
| S. aureus, E. coli |
|
| Jung et al., 2008; Muniyan et al., 2017 |
| P. aeruginosa, E. coli |
| Combination with antibiotics. | Esmaeillou et al., 2017 |
| E. coli |
|
| Karimi et al., 2016 |
| E. faecalis |
|
| Katva et al., 2018 |
| Salmonella Typhimurium |
|
| McShan et al., 2015 |
| Enterobacteriaceae |
|
| Panáček et al., 2016b |
| S. aureus, P. aeruginosa, E. coli |
|
| Panáček et al., 2016a |
| S. aureus, E. coli |
| Upregulation of the expression of antioxidant genes and ATP pumps. | Nagy et al., 2011 |
| S. epidermidis | MDR/Biofilm formation | Conjugation with AMP. | Jaiswal et al., 2015 |
| Mycobacterium smegmatis |
|
| Mohanty et al., 2013 |
| Vibrio fluvialis, P. aeruginosa |
|
| Lambadi et al., 2015 |
| B. subtilis, E. coli |
|
| Liu et al., 2013 |
| E. coli |
|
| Pal et al., 2016 |
| E. coli, Acinetobacter calcoaceticus, Aeromonas bestiarum, B. Subtili, P. fluorescens, Kocuria rhizophila, Micrococcus luteus |
|
| Ruden et al., 2009 |
AuNPs | S. aureus | Vancomycin-resistant | Combination with vancomycin. | Mohammed Fayaz et al., 2011 |
| E. faecalis |
|
| Lai et al., 2015 |
| S. aureus | Methicillin-resistant | Photothermal therapy with ROS generation. | Kuo et al., 2009; Millenbaugh et al., 2015; Mocan et al., 2016; Hu et al., 2017; Ocsoy et al., 2017 |
|
|
| Combination with vancomycin. | Lai et al., 2015 |
| E. coli, K. pneumoniae | Cefotaxime-resistant | Disruption of the bacterial cell wall, DNA damage. | Shaikh et al., 2017 |
| S. aureus, E. coli, P. aeruginosa, Enterobacter aerogenes | Ampicillin-resistant | Combination with ampicillin. Lead to entry into the bacterial cell. | Brown et al., 2012 |
| Streptococcus bovis, S. epidermidis, E. Aerogenes | Kanamycin-resistant | Disruption of the bacterial cell wall. | Payne et al., 2016 |
| K. 45ellular45, Proteus mirabilis, A. baumannii | Carbapenems-resistant | Disturb of osmotic balance and disrupt the integrity of cell bacterial cell wall. | Shaker and Shaaban, 2017 |
| P. aeruginosa | Biofilm formation | Interaction with cell surface. | Yu et al., 2016 |
| S. aureus |
| Laser excitation of the near IR LSPR lead to an efficient photothermal response with efficient killing of bacteria biofilms. | Pallavicini et al., 2014 |
| E. coli, P. aeruginosa, S. aureus |
| Penetration through biofilm layers and interaction with cellular components. | Ramasamy et al., 2017a,b |
| S. epidermidis, S. haemolyticus |
| Combination with antibiotics. | Roshmi et al., 2015 |
| Proteus species |
| Interaction between proteins and NPs. | Vinoj et al., 2015 |
| E. coli, P. aeruginosa, S. aureus, B. Subtilis |
| ROS generation. | Wang Z. et al., 2017 |
| Gram-negative bacteria | MDR | Automated microarray-based system that identifies Gram-negative pathogens from positive blood cultures and resistance mechanism. | Walker et al., 2016 |
| S. aureus |
| Photoacoustic detection and photothermal therapy | Galanzha et al., 2012 |
| E. coli |
| ROS generation | Zhang et al., 2013 |
| E. coli |
| Change of membrane potential and inhibition of ATP synthase; inhibition of the subunit of the ribosome for tRNA binding. | Cui et al., 2012 |
| E. coli, K. pneumoniae, S. aureus, B. subtilis |
|
| Shamaila et al., 2016 |
| E. coli, K. pneumoniae, E. cloacae |
| Photodynamic Therapy/ Photothermal therapy. | Khan et al., 2017 |
| S. aureus, E. coli, E. cloacae, P. aeruginosa |
|
| Mocan et al., 2017 |
| Salmonella Typhimurium |
|
| Lin and Hamme, 2015 |
| S. aureus |
|
| Gil-Tomás et al., 2007 |
| E. coli, S. aureus |
| Interaction with biomolecules. | Kim D. et al., 2017 |
| E. coli, K. pneumoniae |
| Not revealed. | Bresee et al., 2014 |
| S. aureus, E. coli, P. aeruginosa |
| Disruption of bacterial cell wall. | Li et al., 2014; Yang et al., 2017 |
| E. coli |
| Interaction between lysozyme microbubbles and cell wall. | Mahalingam et al., 2015 |
| E. coli, S. aureus, Salmonella Typhimurium |
| Depend of co-existing chemicals that were not removed from AuNPs. | Shareena Dasari et al., 2015; Zhang et al., 2015a |
| E. coli, S. aureus, K. pneumoniae |
| Combination with antibiotics. | Pradeepa et al., 2016 |
| P. aeruginosa | MDR/Biofilm formation | Conjugation with AMP. | Casciaro et al., 2017 |
| Staphylococci, Enterococci and other bacterial strain |
|
| Kuo et al., 2016 |
| E. coli, S. aureus, K. pneumoniae, P. aeruginosa |
|
| Rai A. et al., 2016 |
| Salmonella Typhimurium |
|
| Yeom et al., 2016 |
ZnONPs | K. pneumoniae | Ampicillin- carbenicillin-resistant | ROS generation and disruption of bacterial cell wall. | Reddy L. S. et al., 2014 |
| S. aureus | Methicillin-resistant | Enzyme inhibition. | Cha et al., 2015 |
| E. coli | MDR | ROS generation and disruption of bacterial cell wall. | Li et al., 2012b; Tong et al., 2013; Chakraborti et al., 2014; Gelabert et al., 2016; Nagvenkar et al., 2016 |
| B. subtilis |
|
| Hsueh et al., 2015 |
| S. aureus |
|
| Lakshmi Prasanna and Vijayaraghavan, 2015; Nagvenkar et al., 2016 |
| Vibrio cholerae |
|
| Sarwar et al., 2016 |
| S. aureus, E. coli, Proteus, Acinetobacter, P. aeruginosa |
| Combination with antibiotics. | Ehsan and Sajjad, 2017 |
| S. aureus, E. coli, S. mutants |
| Depend on components and structure of the bacteria cell wall. | Yu et al., 2014 |
| S. aureus, P. aeruginosa | Biofilms formation | ROS generation. | Aswathanarayan and Vittal, 2017 |
| Streptococcus sobrinus |
|
| Aydin Sevinç and Hanley, 2010 |
CuONPs | E. coli, S. aureus | MDR | ROS generation. | Singh R. et al., 2014; Chakraborty et al., 2015 |
| S. aureus, P. aeruginosa |
|
| Ulloa-Ogaz et al., 2017 |
| Paracoccus denitrificans |
| Modulation of nitrogen metabolism. | Su et al., 2015 |
| S. aureus | Biofilm formation | Ongoing investigations. | Chen et al., 2014 |
CuNPs | S. aureus | Methicillin-resistant | Copper ions release and subsequently bind with DNA leading to disorder of helical structure. | Kruk et al., 2015 |
| P. aeruginosa | Biofilm formation | Penetrate the cell wall and damage the nucleic acid. | LewisOscar et al., 2015 |
| P. aeruginosa | MDR | Generation of Cu hydrosols. | Zhang et al., 2015b |
Fe3O4NPs | E. coli | MDR | Radiofrequency
(RF) coupled with magnetic core shell nanoparticles lead to RF-mediated
physical perturbation of cell membranes and bacterial membrane
dysfunction. | Chaurasia et al., 2016 |
| S. aureus, P. aeruginosa, E. coli |
| Penetrate the membrane and interference in the electron transfer. | El-Zowalaty et al., 2015 |
| Gram-positive and -negative bacteria |
| ROS generation. | Behera et al., 2012 |
| Gram-positive and -negative bacteria |
| Nanotechnology to capture Gram- positive and -negative bacteria. | Reddy P. M. et al., 2014 |
| S. aureus | Biofilm formation | ROS generation. | Leuba et al., 2013 |
Al2O3NPs | S. aureus | Methicillin-resistant | Disruption of bacterial cell wall and ROS generation. | Ansari et al., 2013 |
| E. coli | MDR | Penetration and accumulation inside bacterial cell wall. | Ansari et al., 2014 |
TiO2NPs | S. aureus | Methicillin-resistant | Release ions and react with thiol group of proteins present on bacteria surface. | Roy et al., 2010 |
| E. coli | MDR | ROS generation and disruption of bacterial cell wall. | Li et al., 2012b |
| E. coli and Gram-positive bacteria |
| Photocatalytic disinfection. | Foster et al., 2011 |
| E. coli |
| Peroxidation and decomposition of membrane fatty acids. | Joost et al., 2015 |
Cu/Zn bimetal NPs | S. aureus | Methicillin-resistant | Membrane disruption, DNA damage, inhibition of protein synthesis. | Ashfaq et al., 2016 |
Au/Ag bimetallic NPs | Enterococcus | Vancomycin-resistant | Theranostic system for SERS and aPDT. | Zhou et al., 2018 |
| E. coli, S. aureus, E. faecalis, P. aeruginosa | Biofilm formation | Disruption of bacterial cell wall and inactivate the proteins and enzymes for ATP production. | Ramasamy et al., 2016 |
| B. subtilis E. coli, K. pneumoniae, S. aureus | MDR | Combination with antibiotics. | Baker et al., 2017 |
| P. aeruginosa, E. coli, S. aureus, Micrococcus luteus |
|
| Fakhri et al., 2017 |
| E. coli, S. aureus |
|
| dos Santos et al., 2012 |
Au/Pt bimetallic NPS | E. coli | MDR | Damage of the inner membrane, increase intracellular ATP level. | Zhao et al., 2014 |
Au/ Fe3O4NPs | P. aeruginosa | MDR | Disruption of bacterial cell wall. | Niemirowicz et al., 2014 |
Cu/Ni bimetallic NPs | S. aureus, E. coli, S. mutans | MDR | Adsorption of ions to the bacteria cells. | Argueta-Figueroa et al., 2014 |
MgF2NPs | S. aureus | Biofilm formation | Attach and penetrate cell surface leading to disruption in membrane potential, promotes the lipid peroxidation and DNA binding. | Lellouche et al., 2009; Chen et al., 2014 |
Graphene Oxide NPs | S. aureus | Methicillin-resistant | Combine antibiotics with exposure to NIR. | Pan et al., 2016 |
| E. coli, E. faecalis | MDR | UV irradiation lead to generation of ROS. | Govindaraju et al., 2016 |
| E. coli, P. aeruginosa, K. pneumoniae, S. aureus |
| Multiple toxic mechanisms. | Jankauskaite et al., 2016 |
| E. cloacae, S. mutans | Biofilm formation | ROS generation, release of ions. | Kulshrestha et al., 2017 |
SeNPs | S. aureus, E. coli | MDR | Theranostic nanoplatform for selective imaging and targeted therapy: Disruption of the bacteria cell wall. | Huang et al., 2017 |
SiNPs | S. aureus | Methicillin-resistant | Theranostics nanoprobe for near-infrared fluorescence imaging and photothermal therapy: Disruption of the bacteria cell wall. | Zhao et al., 2017 |