Monday, November 22, 2021

Cancer treatment that seeks to control rather than eliminate.

 

Pocket worthyStories to fuel your mind

How Evolution Helps Us Understand and Treat Cancer

A 2020 book argues that controlling cancer is within reach if scientists are able to anticipate the evolution of resistance to traditional treatments.

Smithsonian Magazine

Read when you’ve got time to spare.

cancer cells

Photo by KATERYNA KON/SCIENCE PHOTO LIBRARY/Getty Images

President Nixon declared the "War on Cancer" with the National Cancer Act of 1971, and in the decades since then cancer researchers have delivered new targeted therapies and immunotherapies that radically improved treatment. Even as more weapons are added to the medical arsenal, however, cancer cells find new ways to resist them.

In a provocative book published in 2020, Athena Aktipis — director of the interdisciplinary cooperation initiative at Arizona State University who studies conflict and cooperation, in a whole range of systems from human societies to cancer cells — argues that humanity may need to rethink our war on cancer by focusing not on eliminating it, but on transforming cancer from a set of deadly, acute diseases to chronic, manageable ones. She writes: "Cancer evolves, but we have the ability to anticipate that evolution and strategically plan our response. We can trick it, send it down a blind alley, sucker it into vulnerability, and shape it into something we can live with."

Aktipis’s book, The Cheating Cell: How Evolution Helps Us Understand and Treat Cancer, came out earlier in the spring and she tells Smithsonian how taking an ecological and evolutionary approach to cancer has led to novel treatment strategies—and why cancer is a lot like the mafia.


What was the impetus for writing this book?

There was a need for a book that would explain the origins of cancer. Why is cancer something that we face as humans, and why do other organisms get cancer? People think cancer is just a modern phenomenon, but it has been around since the beginning of multicellularity. I wanted to tell the story of how evolution operates within our bodies—among our cells over the course of our lifetime—to give rise to cancer.

Cancer treatment traditionally uses high doses of toxic drugs to wipe out cancer cells. But some oncologists have started taking a different approach, inspired by integrated pest management, that seeks to control rather than eliminate. Tell us more about this approach to cancer treatment.

Imagine you have a field and you’re trying to grow crops, but there are pests. If you use high doses of chemical pesticides, then you end up selecting for the pests that can survive despite the pesticide. In cancer treatment, the approach has been to use the highest dose that can be tolerated by the patient.

With integrated pest management, by contrast, you limit the use of pesticides to try to avoid selecting for resistance. You may not get rid of the pests completely, but you can keep their population under control so they do limited harm to the crops. Adaptive cancer therapy is based on the idea that resistance is going to evolve unless we manage the evolution of the resistance itself.

Adaptive therapy is an approach pioneered by Bob Gatenby at Moffitt Cancer Center in Tampa, Florida, who was inspired by integrated pest management approaches. The idea of it is to try to keep the tumor a manageable size and to maintain the ability to treat it with the therapy that's being used. This is very different from hitting it with the highest dose that the patient can tolerate to make it go away, which is the traditional approach. With adaptive therapy, you're just trying to keep the tumor at a stable size and not use so much chemotherapy that you get the evolution of resistance. It is taking a long-term time perspective and thinking about not just what's the immediate effect of the treatment, but what's the long-term effect on the ability to keep the tumor under control.

There are some cancers that we know are curable with high-dose therapy, and so for those, we should continue doing what works. But when it comes to advanced metastatic cancer, that is cancer that has spread from the primary tumor to other organs in the body, it is often the case that you can't eradicate the cancer. You can't achieve a full cure at that point. So it makes sense to change the strategy in those cases to thinking about how the patient can most effectively live with the tumor and how we can keep it from becoming more aggressive. These are important approaches as we truly integrate this evolutionary and ecological cooperation theory for cancer biology.

You call cancer cells “cheaters” because they take advantage of healthy cells without offering any benefit to the body. Why do these harmful cellular cheaters exist across the tree of life?

There's an epic struggle between the way that evolution works on populations of organisms to help suppress cancer and then how evolution works within our bodies. In a population of organisms, the individuals that are the best at resisting cancer are favored. But within an individual body, the cells that are best at replicating and monopolizing resources—and therefore more prone to cancerous behavior—are the ones that are selected. So you have two evolutionary processes in conflict.

A complicating factor is that there can be trade-offs between suppressing cancer and other traits that might enhance your fitness, like having more rapid reproduction and growth. Wound healing is a great example. It is very clear how the same cellular characteristics can both help you heal a wound quickly and lead to susceptibility to cancer. When a wound occurs, the nearby cells need to replicate and migrate to heal the wound. In that environment, the cells in the neighborhood are temporarily more tolerant of cells that replicate and move.

That creates a vulnerability to cancer. You have this possibility that cells will replicate more quickly and move, and that they also create the signaling environment that calls off the immune system. One of the oldest ways to refer to a cancer is actually “the wound that will not heal.”

What tricks have other species evolved to resist cancer that we might be able to use to treat cancer in people?

Cancer is extremely widespread across the tree of life. Some factors seem to predict having more cancer suppression mechanisms. For example, we can think of the cancer suppression gene TP53 as the “cheater detector” of the genome. It is part of this large network that takes in information that could indicate a cell has gone rogue. If the combination of signals is not right, then TP53 triggers a response such as stopping the cell cycle to repair DNA. If that doesn’t work, it triggers cell suicide.

This gene is really important for cancer suppression in a lot of species. Elephants have 22 copies of this gene, while humans only have two. It’s not clear if all the copies in elephants are functional, but elephant cells do have more cell death in response to radiation. The more copies of TP53 your cells have, the more likely they are to undergo programmed cell suicide if they are exposed to a carcinogenic situation. The fact that elephants have more copies of TP53 is an interesting example of how large size can select for having more cancer suppression mechanisms.

In addition to cheating healthy cells, cancer cells cooperate. How can cancer treatments take advantage of this?

Cooperation is not always good. The mafia is an amazing example of cooperation to cheat. There are many parallels in cancer with the way that organized crime uses cooperation within the organization to exploit a broader system. For example, during the 1920s, members of the mafia worked together to take advantage of prohibition and began procuring and selling illegal alcohol. The fortunes that factions made doing this allowed them to dominate organized crime in their cities.

There are several potential approaches involving cell cooperation that we should be exploring more in cancer treatment. Rather than trying to just kill the cancer cells, we can try to disrupt their communication and their adhesion to one another. Those are good targets for intervening in the processes that seem to require cell cooperation, like invasion and metastasis, which are the processes by which cancer cells leave the tumor of origin, circulate in the bloodstream, then invade the tissue of a distant organ. Those invasion events are the seeds of metastases: the spread of cancer throughout the body.

How was it? Save stories you love and never lose them.


Logo for Smithsonian Magazine


Saturday, November 20, 2021

Alzheimer’s vaccine step closer after new treatment reverses memory loss

 team theorised that engineering amyloid into the same hairpin shape before administering it as vaccine

 

telegraph.co.uk
Alzheimer’s vaccine step closer after new treatment reverses memory loss
Scientists hail successful trial on mice in which vaccine trains immune system to fight sticky amyloid protein that accumulates in the brain
 
 
Speaking head in silhouetteProfessor Carr added: “While the science is currently still at an early stage, if these results were to be replicated in human clinical trials, then it could be transformative" telegraph.co.uk/news/2021/11/1
Rightwards arrow  The team theorised that engineering amyloid into the same hairpin shape before administering it as vaccine would spur the body into producing antibodies to fight off that specific structure telegraph.co.uk/news/2021/11/1
The team theorised

Dementia - Symptoms and causes - Mayo Clinic

https://www.mayoclinic.org › dementia › syc-20352013
17-Jun-2021 — Having memory loss alone doesn't mean you have dementia, ... Some causes of dementia or dementia-like symptoms can be reversed with ...

Brain Implant Gives Blind Woman Artificial Vision in Scientific First

 

Brain Implant Gives Blind Woman Artificial Vision in Scientific First

Berna Gomez, wearing glasses to test the prosthesis. (John A. Moran Eye Center at the University of Utah)

Brain Implant Gives Blind Woman Artificial Vision in Scientific First

28 OCTOBER 2021

A 'visual prosthesis' implanted directly into the brain has allowed a blind woman to perceive two-dimensional shapes and letters for the first time in 16 years.

The US researchers behind this phenomenal advance in optical prostheses have recently published the results of their experiments, presenting findings that could help revolutionize the way we help those without sight see again.

At age 42, Berna Gomez developed toxic optic neuropathy, a deleterious medical condition that rapidly destroyed the optic nerves connecting her eyes to her brain.

In just a few days, the faces of Gomez' two children and her husband had faded into darkness, and her career as a science teacher had come to an unexpected end.

Then, in 2018, at age 57, Gomez made a brave decision. She volunteered to be the very first person to have a tiny electrode with a hundred microneedles implanted into the visual region of her brain. The prototype would be no larger than a penny, roughly 4 mm by 4 mm, and it would be taken out again after six months.

Unlike retinal implants, which are being explored as means of artificially using light to stimulate the nerves leaving the retina, this particular device, known as the Moran|Cortivis Prosthesis, bypasses the eye and optic nerve completely and goes straight to the source of visual perception. 

After undergoing neurosurgery to implant the device in Spain, Gomez spent the next six months going into the lab every day for four hours to undergo tests and training with the new prosthesis.

The first two months were largely spent getting Gomez to differentiate between the spontaneous pinpricks of light she still occasionally sees in her mind, and the spots of light that were induced by direct stimulation of her prosthesis.

Once she could do this, researchers could start presenting her with actual visual challenges.

When an electrode in her prosthesis was stimulated, Gomez reported 'seeing' a prick of light, known as a phosphene. Depending on the strength of the stimulation, the spot of light could be brighter or more faded, a white color or more of a sepia tone.

When more than two electrodes were simultaneously stimulated, Gomez found it easier to perceive the spots of light. Some stimulation patterns looked like closely spaced dots, while others were more like horizontal lines.

"I can see something!" Gomez exclaimed upon glimpsing a white line in her brain in 2018.

Vertical lines were the hardest for researchers to induce, but by the end of training Gomez was able to correctly discriminate between horizontal and vertical patterns with an accuracy of 100 percent.

The Utah Electrode Array in actionThe Utah Electrode Array in action. (John A. Moran Eye Center at the University of Utah)

"Furthermore, the subject reported that the percepts had more elongated shapes when we increased the distance between the stimulating electrodes," the authors write in their paper

"This suggests that the phosphene's size and appearance is not only a function of the number of electrodes being stimulated, but also of their spatial distribution… "

Given these promising results, the very last month of the experiment was used to investigate whether Gomez could 'see' letters with her prosthesis.

When up to 16 electrodes were simultaneously stimulated in different patterns, Gomez could reliably identify some letters like I, L, C, V and O.  She could even differentiate between an uppercase O and a lowercase o.

The patterns of stimulation needed for the rest of the alphabet are still unknown, but the findings suggest the way we stimulate neurons with electrodes in the brain can create two-dimensional images.

The last part of the experiment involved Gomez wearing special glasses that were embedded with a miniature video camera. This camera scanned objects in front of her and then stimulated different combinations of electrodes in her brain via the prosthesis, thereby creating simple visual images.

The glasses ultimately allowed Gomez to discriminate between the contrasting borders of black and white bars on cardboard. She could even find the location of a large white square on either the left or right half of a computer screen. The more Gomez practiced, the faster she got.

The results are encouraging, but they only exist for a single subject over the course of six months. Before this prototype becomes available for clinical use it will need to be tested among many more patients for much longer periods of time.

Other studies have implanted the same microelectrode arrays, known as Utah Electrode Arrays, into other parts of the brain to help control artificial limbs, so we know they're safe in at least the short term. But it's still early days for the tech, which risks a steady drop in functionality over just a few months of operation.

While engineers beef up the reliability of the devices, we still need to know exactly how to program the software that interprets the visual input.

Last year, researchers at Baylor College of Medicine in Houston inserted a similar device into a deeper part of the visual cortex. Among five study participants, three of whom were sighted and two of whom were blind, the team found the device helped blind people trace the shapes of simple letters like W, S, and Z.

In Gomez's case, there was no evidence of the device triggering neural death, epileptic seizures, or other negative side effects, which is a good sign, and suggests microstimulation can be safely used to restore functional vision, even among those who have suffered irreversible damage to their retinas or optic nerves.

"One goal of this research is to give a blind person more mobility," says bioengineer Richard Normann from the University of Utah.

"It could allow them to identify a person, doorways, or cars easily. It could increase independence and safety. That's what we're working toward."

Right now, it seems only a very rudimentary form of sight can be returned with visual prostheses, but the more we study the brain and these devices among blind and sighted people, the better we will get at figuring out how certain patterns of stimulation can reproduce more complex visual images.

Perhaps one day, other patients in the future will be able to trace the whole alphabet with this prosthesis because of what Gomez has done. Four more patients are already lined up to try out the device.

"I know I am blind, that I will always be blind," Gomez said in a statement a few years ago.

"But I felt like I could do something to help people in the future. I still feel that way."

Gomez's name is listed as co-author on the paper for all her insight and hard work.

The study was published in the Journal of Clinical Investigation.

my suggestion:-
now use ARTIFICIAL INTELLIGENCE TO FIND THE PATTERN OF THE REST OF ALPHABETS,SO THAT

other patients in the future will be able to trace the whole alphabet