With many hospitals across #mumbai halting admissions, shutting their OPDs over coronavirus fears or treating COVID-19 patients only, pregnant women have fewer places to go to deliver their babies.
#coronaupdatesindia#CoronaInMaharashtra#coronamumbai
Scientist in a clean roomIf
you’d been a molecular biosciences student at the University of Kansas
last semester, you might have known this was coming. In class, the
concept of a deadly new coronavirus outbreak originating in China—such
as the one currently bringing the world to its knees—was discussed. That
class was taught by Dr. Anthony R. Fehr,
Assistant Professor of Infectious Disease at the University of Kansas.
Until very recently, Fehr was one of about a hundred people in the
country studying the coronavirus full-time.
“I had a lecture on coronaviruses last semester, in the fall, before
this all happened,” he says. “I knew that there’s a lot of SARS-like
viruses in China that this could happen. So I actually had a slide in my
lecture that was like, ‘there are lots of SARS-like coronaviruses, we
could have another outbreak within our lifetime.'”
“So I basically, you know, predicted something,” he says. “I guess I
was conservative on the timeframe. But I posted that to my Facebook and
everybody’s like, ‘pretty crazy!'”
Right now, Fehr is working to research conserved proteins within
coronaviruses and trying to develop compounds that could inhibit them.
“We’re several years away from having anything that can be used to
humans, though,” he says. “So I’m pushing my research for the next
outbreak.”
And to hear Fehr tell it, there likely will be another outbreak of a coronavirus like the one currently roiling the world.
Will there be a vaccine for the novel coronavirus? Will we one day
get coronavirus shots like we get flu shots? What is China’s connection
to this outbreak and previous ones? Why is the disease called COVID-19
instead of SARS?
Fehr was generous enough to give us a half-hour of his time to answer
these and many other questions. Some of the information is a little
dense, as you might expect from one of a handful of the most
knowledgable people in the world on this subject. But Fehr’s perspective
is something you’ll want to hear.
Here’s a transcript of our interview, which has been edited for length and clarity. Kansas City magazine: Can you just kind of give me a
little bit of background on how you came to study the coronavirus and
the typical career path of a virologist?
Dr. Anthony Fehr: I started working on coronaviruses back in 2012.
Just to give you a sense of normally how academic researchers progress:
We do our graduate work at one university, and when I was in graduate
school, I worked on cytomegalovirus, which is a whole other virus. When
you finish grad school, you go on to what’s kind of a kind of an
internship where you find a lab that you want to work in for a period of
several years. And then, hopefully, you do well enough there that you
ultimately get some other place to like you enough that you get your own
laboratory. So I went to Dr. Stanley Perlman’s lab at the University of
Iowa, mostly just because I’m a trained virologist and his lab seemed
very interesting. They had actually been working on coronavirus since
the ’80s. It just seemed like a good lab and a good fit for me, so
that’s where I did my post-doctoral work.
At the time, it was kind of iffy in terms of funding because the
original SARS outbreak occurred in 2002. The money from that was
starting to wane. And so there was definitely a little bit of, ‘This
could be a tough career road to go down if there are no other
coronavirus outbreaks in the near future.’ Well that year, actually,
MERS coronavirus came out. Now with this one, the funding situation
seems like it will be a lot better going forward. I would imagine you will never worry about funding again for
the rest of your career. I know that coronavirus mostly comes from
animals, specifically bats. Do you mostly study animals?
I more or less study the virus. A lot of our studies are, you know,
geared toward viruses in human cells. So what we do is we take these
little, you could say, petri dishes. We put in human cells, and then we
study how the virus replicates and that kind of thing.
But we also do quite a few mouse experiments as well. So we kind of
do a combination of those. A lot of human viruses we actually have mouse
models for. From doing a little bit of reading about this, one thing that
really struck me is that the ‘non-alarmist’ take was ‘It’s the flu,
bro.’ You heard people saying early, and it’s, of course, not true. But
from what I understand coronavirus can be the common cold—which we’ve
had no ability to tackle throughout history.
So, I’ll explain that. There are a lot of different viruses that
cause the common cold. Coronaviruses account for about ten to twenty
percent of the common cold cases each year. And there are four different
coronaviruses that can cause the common cold. So you’ve likely been
infected with a coronavirus before—that is true.
And so the difference between our cold viruses and then viruses like
the flu and then this SARS coronavirus 2— and SARS originally—is that
the cold viruses generally get into our upper respiratory tract and
that’s about as far as they go. They don’t really go any further, they
kind of get in there, and cause you to cough a little bit, to sneeze,
maybe give you a headache or those kinds of things. But what’s different
about these viruses, they can go into the lower respiratory tract, and
when they get in there and start replicating really aggressively, that
can really affect your ability to breathe. And it can actually cause a
lot of other damage.
So this virus is definitely not just a cold virus.
A lot of people are going to be asymptomatic, or have mild symptoms.
And for those people what’s probably happening is that they’re basically
controlling the virus before it gets into the lower respiratory tract. And that’s because of antibodies they have from battling colds over the years?
No, that’s, that’s actually incorrect. The antibodies directed
against the cold viruses will not be able to do anything against this
virus. Probably what it is: Most healthy individuals have what’s called
an innate immune response, which is where you don’t necessarily need to
have previously seen this.
We all have pretty strong defenses—our cells have a lot of you know,
just regular defenses that they can have all viruses. And in younger,
healthy people, those defenses oftentimes are good enough to stop the
virus before it gets going. Or at least delay it long enough before we
can develop our own antibodies against this virus. Oh! And so one reason that children are doing so much better
with this might be that while they don’t have as many antibodies, they
do have better innate defenses, because that’s kind of a way that their
bodies are set up since they don’t have all those antibodies yet, but
they have a more aggressive innate response?
Yeah, I mean, that’s a bit of an oversimplification. But I think, in
general, you can say that the immune system between young and
middle-aged people that are doing fine here is different from elderly
people. Elderly people have a diminished immune response and it’s often
dysregulated. On my Twitter page, there’s a recent article quoting a lot of work from my old boss, Dr. Stanley Perlman, who had a lot of comments about what the differences could be in children. Until I read about this, I didn’t really understand the
progression of SARS. I’ve always seen this referred to as COVID-19. But
now technically it’s called SARS-CoV-2, right?
Well, let me explain the naming, which is very confusing, and I kind
of hate it. So, on the same day, we named two things. There’s the
disease, which is COVID-19. And then there’s the virus, which is
SARS-Coronavirus-2. They are distinct.
If you had the disease, and you say, ‘I had COVID-19’ that means you
got a disease and you have a poor respiratory function or something like
that. If you got the virus, SARS-CoV-2, that could mean a range of
things. You could have no disease, you could have COVID-19. So COVID-19
is a disease whereas the virus is SARS Coronavirus-2.
It is odd. Going back 20 years to the SARS outbreak: SARS coronavirus
was the original one, but the disease was named just ‘SARS.’ So, they
named the virus, basically SARS coronavirus. And the disease was again
Severe Acute Respiratory Syndrome—that’s what SARS stands for. And
that’s the disease.
The disease caused by this virus is almost identical to SARS, so why
we need to name it a different disease, I’m not quite sure. It could
have easily just been called SARS as well. Because that’s what it is:
It’s a Severe Acute Respiratory Syndrome. Is the similarity to SARS something that we only learned
later, or from the moment they were working on this were they saying,
‘Well, this is basically SARS?’ It seems like the major difference is
that this spreads even more quickly?
In terms of the transmissibility of the virus, it is seemingly a lot
more transmissible than the original SARS. But, yeah, as soon as we had
the sequence of this virus, we knew that it was fairly closely related
to SARS. Getting into the sequencing. I know nothing, but from what
I’ve read a lot of this stuff does tend to start in China because of the
way humans and animals interact there and that’s where the genetics
come from, so China is where a lot of the sequencing stuff actually
happens. I was reading a Malcolm Gladwell story from the New Yorker story published in 1997 about the Spanish Flu and it mentioned Wuhan, and I’m like, “whaaaat?” I guess the current thinking is that the Spanish Flu of 1918, they think, actually originated in China.
Not to politicize it or get into the racist, imperialistic ideas but as
I understand it most of this work in virology involves China because of
how humans and animals come into contact there. Does your work involve
things that are happening in China a lot?
We don’t know exactly how this virus got into the human population,
right? It’s clearly descended from a bat population—and what we do know
is that there are a lot of coronaviruses in bats and a lot of SARS-like
coronaviruses similar to this one and the original SARS. There’s a lot
of viruses in bats in China. China has a lot of really amazing caves
that are very important dwelling places for bats. Having said that,
there are clearly coronaviruses in African bats—I think I saw a report
where there was an Australian one. So it’s not totally just China, but
there are a lot of bats with coronaviruses there.
Now, yes, the virus likely transmitted into some sort of wild animal
and, yes, the fact that they do eat and sell wild animals—it could have
contributed to this. But that’s also not clear, either. If we had bats
with coronaviruses here, that could easily happen in the United States
because we have close contact with animals. The virus might transmit in
their feces or whatever. Who knows—your cat or some other animal that
you interact with could certainly become infected with a virus if we had
the same situation here. So the wet animal markets are not the issue?
I think they might have possibly have contributed here. But I was
talking to people that, you know, go to China a lot and that’s a pretty
rare thing in China. Actually, they don’t have a lot of these wet animal
markets, the vast majority of people there just go to the store, they
don’t actually go to these markets. But it could have been one or two
people that did it and, you know, started this outbreak. So, compared to the original SARS, what are we doing right
this time? And what did we do wrong? How is it different in the original
SARS outbreak?
With the original SARS outbreak, China was less than forthcoming
about telling the world that there was an outbreak. The technology also
was dramatically slower back then, so we didn’t know what the virus was
in that case—and I would have to say, “we” with quotation marks because I
was barely in college at that time. But you can imagine the sequencing
technology and the speed at which these things can get done or just is
somewhat greater today than it was in 2000.
So, the great thing that happened here is that we got the sequence
immediately, we could develop diagnostic tests very quickly. And
considering the speed at which the virus transmits through the human
population, had we not had that, China might have had quadruple or ten
times more cases than they actually had—if not more that. That was a
great thing. They were able to basically stop this outbreak.
What we’re not doing? It’s hard to say because, you know, there are a
lot of hard decisions that have to be made when you talk about forcing
quarantine and forcing people to stay in their houses and canceling lots
of events, and I don’t know if I would have made the right decisions at
the end of the day. But you look back at it probably the moment this
virus got out of China and into some of these other countries and it was
more than just a couple of cases in these other countries, we should
have probably shut down our borders to any international travel. I don’t
know if that would have solved it, because this virus is extremely
tricky to stop from spreading. We don’t really have a clue how many
people are actually infected in this country right now. I look at the
numbers every day, and it’s like, there’s 10,000 now, but it could
easily be five times that many—or more. Yeah, I mean, that I find those numbers to be a little bit funny. I remember someone in Ohio said, ‘Well, actually, we probably have 100,000 cases,’ but every case is being reported by the media as ‘There’s a new case in Jackson County!‘
I obviously have no idea, but it seems possible that there are several
thousand cases in Jackson County right now. Because you know all of
these things that other people don’t know, what do you do that most
people don’t do in your daily life? Do you wash your hands for 40
seconds?
I probably do the same thing as everybody else does. I mean, I guess
I’m concerned about it. But at the same time, you know, these things are
really hard. You spend your whole life like doing all these cleaning
things, and it’s still not a guarantee. Do you think you’re going to get it? I mean, are we all going to get it?
That’s a great question. And—I don’t think we will. Even if you
multiply the number of cases in China, by ten, that’s still less than
one percent of their whole population. So even if they underestimated
their numbers by ten, that’s still probably like, maybe like a percent
of the whole population. So, that indicates that the large majority of
us may or may not get it, you know, depending on how effectively we can
stop it through the current measures. And so, we’ll see.
And I’m hopeful that perhaps this will kind of diminish with the
season as the other coronaviruses do. I would not guarantee that—that’s
certainly not something that’s guaranteed by any stretch of the
imagination. But I’m hopeful that will be the case and that we’ll have
time to maybe get a vaccine out by the time we hit cold season next
year. The common cold, unlike the flu, is basically impossible to
develop a vaccine for because it changes so quickly. Isn’t that
something that we have to worry about with this?
So, as I said, coronavirus counts for about twenty percent of common
colds but the vast majority of the other cases are what are called
rhinoviruses. Rhinoviruses mutate very rapidly and you can’t really make
a vaccine against those things.
Coronaviruses don’t mutate quite as rapidly. They still mutate rapidly,
but they don’t move quite as rapidly as other RNA viruses, because they
have what’s called “proofreading.” So they can actually “proofread”
their genome when they make new copies, for errors.
Now, that’s not a foolproof system. They’re still going to make
mutations. It’s not clear how long a vaccine would work—it could be like
a flu where you have to kind of take the current strain and take your
best guess at it. But at the same point, I don’t think it’s going to be
an every year type of thing. It might be that it’s every five years or
something like that, that you’ll see that your immunity might wane to
this virus.
At the very least, it might have some partial immunity that can
mitigate and take the lethality rate down from three or four percent to a
more manageable number. So do you think that getting a coronavirus shot is going to become like getting a flu shot after this?
Probably not. You know, these highly lethal coronaviruses are
zoonotic events. We don’t have one like the flu that goes around every
year. Maybe this one will become that—we really don’t know. This SARS
Coronavirus-2 could be one of those that mutates enough that it reoccurs
every year, or maybe every two or three years, and because it transmits
so well we can’t really ever get rid of it. That’s certainly a
possibility. The other possibility is we get a vaccine, it sort of goes
away, and then we’re waiting for the next one.
And that is something that will happen again because there’s just so
much genetic material out there in all of these bat populations around
the world, if I understand correctly.
I think it’s likely. I think based on what happened this year they’re
going to start really regulating markets in China. Again, a lot of this
is just chance. And you know, maybe it’ll be five years from now, maybe
it’ll be 50 years from now.
Something a lot of people don’t know that there was a big outbreak of
a coronavirus just two years ago in China, in pigs. There was a pig
virus that emerged from bats. Bats actually infected pigs and that moved into the pig population in China. Just two years ago.
So, again, that just re-emphasizes that this happens somewhat frequently. I know from reading about past pandemics like the Spanish Flu
that the second wave—when it comes back either slightly mutated or when
people have their guard down—has been one of the tougher times.
I’ve never heard of that—the second wave being worse. It’ll be
interesting to see how this happens. Will it come back? If it does go
away during the summer—and that’s a big ‘if’—when does it come back,
does it come back with basically the same sequence, so if you already
had it you’re gonna be completely immune? Or will you only be partially
immune? How many people will not get it because they had it
asymptomatically that we just don’t know about? So there’s a lot of
questions that come about from that. Are they getting plasma with antibodies in it from people who have recovered to give to our top officials?
I’ve heard a bit about that. You know, if you recover from this, you’ll likely have antibodies that could be neutralizing or could inhibit the virus.
And that’s a common way to treat patients—basically, give them these
antibodies from another person. Now, you have to be careful because you
have to have a blood match. So it’s not necessarily ideal, but I think
it has the potential to work.
I know that there are many other infections where we do that and it
can be helpful. All of these things that we’re throwing out there have
not been tested. So I’m just saying it has worked in other viruses but
that doesn’t necessarily mean it’s going to work here. I have to ask about the reaction from your friends and family
who probably thought ‘he’s doing this weird nerdy work on this virus,
SARS, from 20 years ago.’ Have people that are close to you suddenly
been like, ‘So tell me everything you know about coronavirus’?
Yeah, I’ve definitely had a few more friends come out of the woodwork
that normally don’t talk to you that want to talk. But I take it all in
stride. I feel like it’s our obligation as scientists to inform the
public as best as we can, whenever people ask. They definitely seem to
take more of an interest in my work now
Saturday, April 11, 2020
Work
remotely using Viveo, a high-quality telemedicine platform used by
doctors and patients all around the world. Free of charge.
1 day ago - Now, medical technologists from Japan have come up with an innovative solution for ventilators, which can be manufactured in local conditions ...